Zusammenfassung
Trotz wesentlicher Fortschritte in der systemischen Therapie des Mammkarzinoms und
deutlicher Prognoseverbesserung sind Rezidive nach oft langer Latenzzeit für diese
Erkrankung charakteristisch. Ausgangspunkt für eine Fernmetastasierung sind der Regel
isolierte Tumorzellen, die bereits früh im Verlauf der Erkrankung hämatogen disseminieren.
Der Nachweis dieser minimalen Tumorresiduen (minimal residual disease, MRD) ist mit
konventionellen bildgebenden Verfahren nicht möglich. Der immunzytochemische Nachweis
isolierter Tumorzellen im Knochenmark ist die am besten validierte Methode, um Tumorresiduen
zu detektieren. Die daraus gewonnenen Informationen über Prävalenz und Phänotyp der
Tumorzellen lassen Rückschlüsse auf Tumorbiologie und individuelle Prognose zu, und
könnten in Zukunft in der adjuvanten Situation zu einer Optimierung der Therapie führen.
Die Detektion von minimalen Tumorresiduen nach Abschluss der Primärtherapie könnte
die Beantwortung der von Patientinnen häufig gestellten Frage nach dem individuellen
Erfolg adjuvanter Therapien in Zukunft erleichtern und Grundlage für die Einleitung
einer „sekundär-adjuvanten Therapie” im Rahmen der onkologischen Nachsorge sein.
Schlüsselwörter
Mammakarzinom - disseminierte Tumorzellen - isolierte Tumorzellen - Mikrometastasen
- minimale Tumorresiduen - adjuvant - sekundär-adjuvant
Literatur
1
DeVita V TJ.
Breast cancer therapy: exercising all our options.
N Eng J Med.
1989;
320
527-529
2
Rosner D, Lane W W.
Predicting recurrence in axillary-node negative breast cancer patients.
Breast Cancer Res Treat.
1993;
25
127-139
3
Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich C R, Gastroph S, Wischnik A,
Dimpfl T, Kindermann G, Riethmuller G, Schlimok G.
Cytokeratin-positive cells in the bone marrow and survival of patients with stage
I, II, or III breast cancer.
N Engl J Med.
2000;
342
525-533
4
Cote R J, Rosen P P, Lesser M L, Old L J, Osborne M P.
Prediction of early relapse in patients with operable breast cancer by detection of
occult bone marrow micrometastases.
J Clin Oncol.
1991;
9
1749-1756
5
Diel I J, Kaufmann M, Costa S D, Holle R, Minckwitz G von, Solomayer E F, Kaul S,
Bastert G.
Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic
value in comparison with nodal status.
J Natl Cancer Inst.
1996;
88
1652-1658
6
Gebauer G, Fehm T, Merkle E, Beck E P, Lang N, Jager W.
Epithelial cells in bone marrow of breast cancer patients at time of primary surgery:
clinical outcome during long-term follow-up.
J Clin Oncol.
2001;
19
3669-3674
7
Gerber B, Krause A, Muller H, Richter D, Reimer T, Makovitzky J, Herrnring C, Jeschke U,
Kundt G, Friese K.
Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone
marrow aspirates in breast cancer and its correlation with other prognostic factors.
J Clin Oncol.
2001;
19
960-971
8
Harbeck N, Untch M, Pache L, Eiermann W.
Tumour cell detection in the bone marrow of breast cancer patients at primary therapy:
results of a 3-year median follow-up.
Br J Cancer.
1994;
69
566-571
9
Landys K, Persson S, Kovarik J, Hultborn R, Holmberg E.
Prognostic value of bone marrow biopsy in operable breast cancer patients at the time
of initial diagnosis: Results of a 20-year median follow-up.
Breast Cancer Res Treat.
1998;
49
27-33
10
Mansi J L, Gogas H, Bliss J M, Gazet J C, Berger U, Coombes R C.
Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up
study.
Lancet.
1999;
354
197-202
11
Woelfle U, Sauter G, Santjer S, Brakenhoff R, Pantel K.
Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer.
Clin Cancer Res.
2004;
10
2670-2674
12
Gangnus R, Langer S, Breit E, Pantel K, Speicher M R.
Genomic profiling of viable and proliferative micrometastatic cells from early-stage
breast cancer patients.
Clin Cancer Res.
2004;
10
3457-3464
13
Klein C A, Blankenstein T J, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein N H,
Riethmuller G.
Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer.
Lancet.
2002;
360
683-689
14
Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein T J, Kaufmann M,
Diebold J, Arnholdt H, Muller P, Bischoff J, Harich D, Schlimok G, Riethmuller G,
Eils R, Klein C A.
From latent disseminated cells to overt metastasis: genetic analysis of systemic breast
cancer progression.
Proc Natl Acad Sci USA.
2003;
100
7737-7742
15
Bostick P J, Chatterjee S, Chi D D, Huynh K T, Giuliano A E, Cote R, Hoon D S.
Limitations of specific reverse-transcriptase polymerase chain reaction markers in
the detection of metastases in the lymph nodes and blood of breast cancer patients.
J Clin Oncol.
1998;
16
2632-2640
16
Zippelius A, Kufer P, Honold G, Kollermann M W, Oberneder R, Schlimok G, Riethmuller G,
Pantel K.
Limitations of reverse-transcriptase polymerase chain reaction analyses for detection
of micrometastatic epithelial cancer cells in bone marrow.
J Clin Oncol.
1997;
15
2701-2708
17
Xenidis N, Perraki M, Kafousi M, Apostolaki S, Bolonaki I, Stathopoulou A, Kalbakis K,
Androulakis N, Kouroussis C, Pallis T, Christophylakis C, Argyraki K, Lianidou E S,
Stathopoulos S, Georgoulias V, Mavroudis D.
Predictive and prognostic value of peripheral blood cytokeratin-19 mRNA-positive cells
detected by real-time polymerase chain reaction in node-negative breast cancer patients.
J Clin Oncol.
2006;
24
3756-3762
18
Fehm T, Braun S, Muller V, Janni W, Gebauer G, Marth C, Schindlbeck C, Wallwiener D,
Borgen E, Naume B, Pantel K, Solomayer E.
A concept for the standardized detection of disseminated tumor cells in bone marrow
from patients with primary breast cancer and its clinical implementation.
Cancer.
2006;
107
885-892
19
Braun S, Pantel K.
Prognostic significance of micrometastatic bone marrow involvement.
Breast Cancer Res Treat.
1998;
52
201-216
20
Pantel K, Felber E, Schlimok G.
Detection and characterization of residual disease in breast cancer.
J Hematother.
1994;
3
315-322
21
Borgen E, Naume B, Nesland J M, Nowels K W, Pavlak N, Ravkin I, Goldbard S.
Use of automated microscopy for the detection of disseminated tumor cells in bone
marrow samples.
Cytometry.
2001;
46
215-221
22
Borgen E, Beiske K, Trachsel S, Nesland J M, Kvalheim G, Herstad T K, Schlichting E,
Qvist H, Naume B.
Immunocytochemical detection of isolated epithelial cells in bone marrow: non-specific
staining and contribution by plasma cells directly reactive to alkaline phosphatase.
J Pathol.
1998;
185
427-434
23
Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki J R,
Riethmuller G.
Differential expression of proliferation-associated molecules in individual micrometastatic
carcinoma cells.
J Natl Cancer Inst.
1993;
85
1419-1424
24
Putz E, Witter K, Offner S, Stosiek P, Zippelius A, Johnson J, Zahn R, Riethmuller G,
Pantel K.
Phenotypic characteristics of cell lines derived from disseminated cancer cells in
bone marrow of patients with solid epithelial tumors: establishment of working models
for human micrometastases.
Cancer Res.
1999;
59
241-248
25
Weckermann D, Muller P, Wawroschek F, Krawczak G, Riethmuller G, Schlimok G.
Micrometastases of bone marrow in localized prostate cancer: correlation with established
risk factors.
J Clin Oncol.
1999;
17
3438-3443
26
Meng S, Tripathy D, Shete S, Ashfaq R, Haley B, Perkins S, Beitsch P, Khan A, Euhus D,
Osborne C, Frenkel E, Hoover S, Leitch M, Clifford E, Vitetta E, Morrison L, Herlyn D,
Terstappen L W, Fleming T, Fehm T, Tucker T, Lane N, Wang J, Uhr J.
HER-2 gene amplification can be acquired as breast cancer progresses.
Proc Natl Acad Sci USA.
2004;
101
9393-9398
27
Solakoglu O, Maierhofer C, Lahr G, Breit E, Scheunemann P, Heumos I, Pichlmeier U,
Schlimok G, Oberneder R, Kollermann M W, Kollermann J, Speicher M R, Pantel K.
Heterogeneous proliferative potential of occult metastatic cells in bone marrow of
patients with solid epithelial tumors.
Proc Natl Acad Sci USA.
2002;
99
2246-2251
28
Braun S, Vogl F D, Naume B, Janni W, Osborne M P, Coombes R C, Schlimok G, Diel I J,
Gerber B, Gebauer G, Pierga J Y, Marth C, Oruzio D, Wiedswang G, Solomayer E F, Kundt G,
Strobl B, Fehm T, Wong G Y, Bliss J, Vincent-Salomon A, Pantel K.
A pooled analysis of bone marrow micrometastasis in breast cancer.
N Engl J Med.
2005;
353
793-802
29
Diel I J, Solomayer E F, Costa S D, Gollan C, Goerner R, Wallwiener D, Kaufmann M,
Bastert G.
Reduction in new metastases in breast cancer with adjuvant clodronate treatment.
N Engl J Med.
1998;
339
357-363
30
Schlimok G, Funke I, Holzmann B, Gottlinger G, Schmidt G, Hauser H, Swierkot S, Warnecke H H,
Schneider B, Koprowski H, et a.
Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin
and in vivo labeling with anti-17-1A monoclonal antibodies.
Proc Natl Acad Sci USA.
1987;
84
8672-8676
31
Wiedswang G, Borgen E, Karesen R, Kvalheim G, Nesland J M, Qvist H, Schlichting E,
Sauer T, Janbu J, Harbitz T, Naume B.
Detection of isolated tumor cells in bone marrow is an independent prognostic factor
in breast cancer.
J Clin Oncol.
2003;
21
3469-3478
32
Fields K K, Elfenbein G J, Trudeau W L, Perkins J B, Janssen W E, Moscinski L C.
Clinical significance of bone marrow metastases as detected using the polymerase chain
reaction in patients with breast cancer undergoing high-dose chemotherapy and autologous
bone marrow transplantation.
J Clin Oncol.
1996;
14
1868-1876
33
Datta Y H, Adams P T, Drobyski W R, Ethier S P, Terry V H, Roth M S.
Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase
chain reaction.
J Clin Oncol.
1994;
12
475-482
34
Vannucchi A M, Bosi A, Glinz S, Pacini P, Linari S, Saccardi R, Alterini R, Rigacci L,
Guidi S, Lombardini L, Longo G, Mariani M P, Rossi-Ferrini P.
Evaluation of breast tumour cell contamination in the bone marrow and leukapheresis
collections by RT-PCR for cytokeratin-19 mRNA.
Br J Haematol.
1998;
103
610-617
35
Courtemanche D J, Worth A J, Coupland R W, MacFarlane J K.
Detection of micrometastases from primary breast cancer.
Can J Surg.
1991;
34
15-19
36
Funke I, Fries S, Rolle M, Heiss M M, Untch M, Bohmert H, Schildberg F W, Jauch K W.
Comparative analyses of bone marrow micrometastases in breast and gastric cancer.
Int J Cancer.
1996;
65
755-761
37
Molino A, Pelosi G, Turazza M, Sperotto L, Bonetti A, Nortilli R, Fattovich G, Alaimo C,
Piubello Q, Pavanel F, Micciolo R, Cetto G L.
Bone marrow micrometastases in 109 breast cancer patients: correlations with clinical
and pathological features and prognosis.
Breast Cancer Res Treat.
1997;
42
23-30
38
Porro G, Menard S, Tagliabue E, Orefice S, Salvadori B, Squicciarini P, Andreola S,
Rilke F, Colnaghi M I.
Monoclonal antibody detection of carcinoma cells in bone marrow biopsy specimens from
breast cancer patients.
Cancer.
1988;
61
2407-2411
39
Salvadori B, Squicciarini P, Rovini D, Orefice S, Andreola S, Rilke F, Barletta L,
Menard S, Colnaghi M I.
Use of monoclonal antibody MBr1 to detect micrometastases in bone marrow specimens
of breast cancer patients.
Eur J Cancer.
1990;
26
865-867
40
Slade M J, Smith B M, Sinnett H D, Cross N C, Coombes R C.
Quantitative polymerase chain reaction for the detection of micrometastases in patients
with breast cancer.
J Clin Oncol.
1999;
17
870-879
41
Untch M, Kahlert S, Funke I, Boettcher B, Konecny G, Nestle-Kraemling C, Bauernfeind I.
Detection of cytokeratin (CK) 18 positive cells in the bone marrow (BM) of breast
cancer patients - no prediction of bad outcome.
Proc ASCO.
1999;
18
693
42
Mathieu M C, Friedman S, Bosq J, Caillou B, Spielmann M, Travagli J P, Contesso G.
Immunohistochemical staining of bone marrow biopsies for detection of occult metastasis
in breast cancer.
Breast Cancer Res Treat.
1990;
15
21-26
43
Singletary S E, Larry L, Tucker S L, Spitzer G.
Detection of micrometastatic tumor cells in bone marrow of breast carcinoma patients.
J Surg Oncol.
1991;
47
32-36
44
Pantel K, Muller V, Auer M, Nusser N, Harbeck N, Braun S.
Detection and clinical implications of early systemic tumor cell dissemination in
breast cancer.
Clin Cancer Res.
2003;
9
6326-6334
45
Goldhirsch A, Glick J H, Gelber R D, Coates A S, Thurlimann B, Senn H J.
Meeting highlights: international expert consensus on the primary therapy of early
breast cancer 2005.
Ann Oncol.
2005;
16
1569-1583
46
Braun S, Kentenich C, Janni W, Hepp F, de Waal J, Willgeroth F, Sommer H, Pantel K.
Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor
cells in bone marrow of high-risk breast cancer patients.
J Clin Oncol.
2000;
18
80-86
47 Janni W, Wiedswang G, Fehm T, Jückstock J, Borgen E, Rack B, Braun S, Sommer H,
Solomayer E F, Pantel K, Nesland J M, Friese K, Naume B. Persistence of disseminated
tumor cells (DTC) in bone marrow (BM) during follow-up predicts increased risk for
relapse - up-date of the pooled European data. Breast Cancer Res Treat 2006 70
48
Coombes R C, Berger U, Mansi J, Redding H, Powles T J, Neville A M, McKinna A, Nash A G,
Gazet J C, Ford H T. et al .
Prognostic significance of micrometastases in bone marrow in patients with primary
breast cancer.
NCI Monogr.
1986;
1
51-53
49
Kirk S J, Cooper G G, Hoper M, Watt P C, Roy A D, Odling-Smee W.
The prognostic significance of marrow micrometastases in women with early breast cancer.
Eur J Surg Oncol.
1990;
16
481-485
50
Dearnaley D P, Ormerod M G, Sloane J P.
Micrometastases in breast cancer: long-term follow-up of the first patient cohort.
Eur J Cancer.
1991;
27
236-239
PD Dr. med. W. Janni
Frauenklinik Innenstadt der LMU München
Maistr. 11
80337 München
Phone: 0 89/51 60 42 50
Phone: 01 77/8 09 02 58
Fax: 0 89/51 60 46 62
Email: wolfgang.janni@med.uni-muenchen.de